
The proteinase activities for all coronaviruses include both papain-like proteinase (PLP) and picornavirus 3C-like proteinase activities that are encoded within the replicase polyproteins and mediate both cis and trans cleavage events (Ziebuhr et al., 2000). Because of the parallel evolution of the proteinases, their cleavage sites, and the hierarchical cleavage processes, the proteolytic processing of the coronavirus replicase proteins may serve as distinct regulatory and genetic elements (Ziebuhr et al., 2001). Specifically, there are both conserved and divergent regions of the replicase polyproteins by amino acid identity and similarity, with the sequences and predicted mature proteins beginning with the 3C-like proteinases through the carboxy terminus of the replicase polyprotein retaining higher identity and similarity across the predicted proteins. In contrast, the amino-terminal third of the replicase demonstrates the most variation in proteins, cleavage site locations, and the number of proteinases that mediate maturation processing. SCoV appears to have the general organization of, and similar protein sizes to, the group 2 coronaviruses such as MHV in this part of the genome (Snijder et al., 2003). However, SCoV likely uses only one PLP to mediate the cleavages, similar to the group 3 coronavirus infectious bronchitis virus (IBV). Thus this region of the replicase may experience the most variability, suggesting either the encoding of accessory functions that are flexible and tolerant of changes, or conversely group or host-specific roles that are subject to pressure for more rapid change.
Source and Ref: